On the Kähler Classes of Constant Scalar Curvature Metrics on Blow Ups

نویسندگان

  • CLAUDIO AREZZO
  • FRANK PACARD
چکیده

Problem 1.1. Given a compact constant scalar curvature Kähler manifold (M,J, g, ω), of complex dimension m := dimC M , and having defined △ := {(p1, . . . , pn) ∈ M n : ∃ a 6= b pa = pb}, characterize the set PW = {(p1, . . . , pn, α1, . . . , αn)} ⊂ (M n \ △) × (0,+∞) for which M̃ = Blp1,...,pnM , the blow up of M at p1, . . . , pn has a constant scalar curvature Kähler metric (cscK from now on) in the Kähler class

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blowing up and Desingularizing Constant Scalar Curvature Kähler Manifolds

This paper is concerned with the existence of constant scalar curvature Kähler metrics on blow ups at finitely many points of compact manifolds which already carry constant scalar curvature Kähler metrics. We also consider the desingularization of isolated quotient singularities of compact orbifolds which already carry constant scalar curvature Kähler metrics. Let (M,ω) be either a m-dimensiona...

متن کامل

Blowing up Kähler manifolds withconstant scalar curvature, II

In this paper we prove the existence of Kähler metrics of constant scalar curvature on the blow up at finitely many points of a compact manifold which already carries a Kähler constant scalar curvature metric. Necessary conditions of the number and locations of the blow up points are given. 1991 Math. Subject Classification: 58E11, 32C17.

متن کامل

On the existence of Kähler metrics of constant scalar curvature

For certain compact complex Fano manifolds M with reductive Lie algebras of holomorphic vector fields, we determine the analytic subvariety of the second cohomology group of M consisting of Kähler classes whose Bando-Calabi-Futaki character vanishes. Then a Kähler class contains a Kähler metric of constant scalar curvature if and only if the Kähler class is contained in the analytic subvariety....

متن کامل

(kähler-)ricci Flow on (kähler) Manifolds

One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...

متن کامل

A Remark on Kähler Metrics of Constant Scalar Curvature on Ruled Complex Surfaces

In this note we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. Dedicated to Professor Paul Gauduchon on his 60th birthday.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007